
LinuxDirector: A Connection Director for Scalable Internet Services

Wensong Zhang, Shiyao Jin, Quanyuan Wu
National Laboratory for Parallel & Distributed Processing

Changsha, Hunan 410073, China
wensong@LinuxVirtualServer.org
http://www.LinuxVirtualServer.org

Abstract

LinuxDirector is a connection director that supports
load balancing among multiple Internet servers, which can
be used to build scalable Internet services based on clus-
ters of servers. LinuxDirector extends the TCP/IP stack of
Linux kernel to support three IP load balancing techniques,
VS/NAT, VS/TUN and VS/DR. Four scheduling algorithms
have been implemented to assign connections to different
servers. Scalability is achieved by transparently adding or
removing a node in the cluster. High availability is provided
by detecting node or daemon failures and reconfiguring the
system appropriately. This paper describes the design and
implementation of LinuxDirector and presents several of its
features including scalability, high availability and connec-
tion affinity.

KEYWORDS

Internet services, server clustering, load balancing, high
availability

1. Introduction

With the explosive growth of the Internet and its increas-
ingly important role in our lives, traffic on the Internet is
increasing dramatically, which has been growing at over
100% annual rate. More and more sites are often unable
to serve their workload, particulary during peak periods of
activity. Some of them have already received tens of mil-
lions hits per day. The long delay of services will lower
the quality of services. With the increasing number of users
and the increasing workload, companies often worry about
how systems grow over time. Companies are moving their
mission-critical applications on the Internet, and any stop of
services causes companies to loose customers and money.
Therefore, the demand for hardware and software solution
to support highly scalable and highly available services is

growing urgently. The requirements can be summarized as
follows:

� Scalability, when the load offered to the service in-
creases, system can be scaled to meet the requirement.

� 24x7 availability, the service as a whole must be avail-
able 24x7, despite of transient partial hardware and
software failures.

� Cost-effectiveness, the whole system must be eco-
nomical to afford and expand.

� Manageability, although the whole system may be
physically large, it should be easy to manage.

A single server is usually not sufficient to handle this
aggressively increasing load. The server upgrading process
is complex, and the server is a single point of failure. The
higher end the server is upgraded to, the much higher cost
we have to pay.

Clusters of servers, connected by a fast network, are
emerging as a viable architecture for building a high-
performance and highly available server. This type of loose-
coupled architecture is more scalable, more cost-effective
and more reliable than a single processor system or a tightly
coupled multiprocessor system. However, there are chal-
lenges to provide transparency, efficiency, scalability and
high availability of parallel services in the cluster.

LinuxDirector [18] is our solution to the requirements.
LinuxDirector is a connection director that supports load
balancing among multiple Internet servers, which can be
used to build scalable Internet services based on clusters
of servers. Prototypes of LinuxDirector have already been
used to build many sites of heavy load in the Internet.

LinuxDirector directs network connections to the differ-
ent servers according to scheduling algorithms and makes
parallel services of the cluster to appear as a virtual service
on a single IP address. Client applications interact with the
cluster as if it were a single high-performance and highly
available server. The clients are not affected by interaction

with the cluster and do not need modification. Scalability is
achieved by transparently adding or removing a node in the
cluster. High availability is provided by detecting node or
daemon failures and reconfiguring the system appropriately.

The remainder of the paper is organized as follows: In
Section 2, we discuss the related works. In Section 3, we de-
scribe three require dispatching techniques and their work-
ing principles, and also discuss their advantages and dis-
advantages. In Section 4, we describe the four scheduling
algorithms that have been developed for LinuxDirector. In
Section 5, we describe the high availability issue of Lin-
uxDirector. In Section 6, we describe how connection affin-
ity is handled in LinuxDirector. In Section 7, we present
some big LinuxDirector application that we have known.
Finally, conclusion and future work appear in Section 8.

2. Related Works

In the client/server applications, one end is the client,
the other end is the server, and there may be a proxy in the
middle. Based on this scenario, we can see that there are
many ways to dispatch requests to a cluster of servers in
the different levels. Existing request dispatching techniques
can be classified into the following categories:

� The client-side approach

Berkeley’s Smart Client [17] suggests that the service
provide an applet running at the client side. The applet
makes requests to the cluster of servers to collect load
information of all the servers, then chooses a server
based on that information and forwards requests to that
server. The applet tries other servers when it finds the
chosen server is down. However, these client-side ap-
proaches are not client-transparent, they requires mod-
ification of client applications, so they cannot be ap-
plied to all TCP/IP services. Moreover, they will po-
tentially increase network traffic by extra querying or
probing.

� The server-side Round-Robin DNS approach

The NCSA scalable web server is the first prototype
of a scalable web server using the Round-Robin DNS
approach [12, 13, 5]. The RRDNS server maps a sin-
gle name to the different IP addresses in a round-robin
manner so that the different clients will access the dif-
ferent servers in the cluster for the ideal situation and
load is distributed among the servers. However, due to
the caching nature of clients and hierarchical DNS sys-
tem, it easily leads to dynamic load imbalance among
the servers, thus it is not easy for a server to han-
dle its peak load. The TTL(Time To Live) value of
a name mapping cannot be well chosen at RR-DNS,
with small values the RR-DNS will be a bottleneck,

and with high values the dynamic load imbalance will
get even worse. Even the TTL value is set with zero,
the scheduling granularity is per host, different client
access pattern may lead to dynamic load imbalance,
because some clients (such as a proxy server) may pull
lots of pages from the site, and others may just surf
a few pages and leave. Futhermore, it is not so reli-
able, when a server node fails, the clients who maps
the name to the IP address will find the server is down,
and the problem still exists even if they press ”reload”
button in the browsers.

� The server-side application-level scheduling ap-
proach

EDDIE [6] , Reverse-proxy [15] and SWEB [4] use the
application-level scheduling approach to build a scal-
able web server. They all forward HTTP requests to
different web servers in the cluster, then get the results,
and finally return them to the clients. However, this ap-
proach requires to establish two TCP connections for
each request, one is between the client and the load
balancer, the other is between the load balancer and
the server, the delay is high. The overhead of deal-
ing HTTP requests and replies in the application-level
is high. Thus the application-level load balancer will
be a new bottleneck soon when the number of server
nodes increases.

� The server-side IP-level scheduling approaches

Berkeley’s MagicRouter [3] and Cisco’s LocalDirec-
tor [2] use the Network Address Translation approach
similar to the NAT approach used in LinuxDirector.
However, the MagicRouter didn’t survive to be a use-
ful system for others, the LocalDirector is too expen-
sive and only supports part of TCP protocol.

IBM’s TCP router [8] uses the modified Network Ad-
dress Translation approach to build scalable web server
on IBM scalable Parallel SP-2 system. The TCP router
changes the destination address of the request packets
and forwards the chosen server, that server is modified
to put the TCP router address instead of its own ad-
dress as the source address in the reply packets. The
advantage of the modified approach is that the TCP
router avoids rewriting of the reply packets, the dis-
advantage is that it requires modification of the kernel
code of every server in the cluster. NetDispatcher [9]
, the successor of TCP router, directly forwards pack-
ets to servers that is configured with router address on
non arp-exported interfaces. The approach, similar to
the VS/DR in LinuxDirector, has good scalability, but
NetDispatcher is a very expensive commercial prod-
uct.

2

ONE-IP [7] requires that all servers have their own IP
addresses in a network and they are all configured with
the same router address on the IP alias interfaces. Two
dispatching techniques are used, one is based on a cen-
tral dispatcher routing IP packets to different servers,
the other is based on packet broadcasting and local fil-
tering. The advantage is that the rewriting of response
packets can be avoided. The disadvantage is that it can-
not be applied to all operating systems because some
operating systems will shutdown the network interface
when detecting IP address collision, and the local fil-
tering also requires modification of the kernel code of
server.

3. IP Load Balancing Techniques

Since the IP load balancing techniques have good scala-
bility, LinuxDirector extends the TCP/IP stack of Linux ker-
nel to support three IP load balancing techniques, VS/NAT,
VS/TUN and VS/DR. The box running LinuxDirector act
as a load balancer of network connections from clients who
know a single IP address for a service, to a set of servers that
actually perform the work. In general, real servers are iden-
tial, they run the same service and they have the same set of
contents. The contents are either replicated on each server’s
local disk, shared on a network file system, or served by
a distributed file system. We call data communication be-
tween a client’s socket and a server’s socket connection, no
matter it talks TCP or UDP protocol. The following sub-
sections describe the working principles of three techniques
and their advantages and disadvantages.

3.1. Virtual Server via NAT

Due to the shortage of IP address in IPv4 and some se-
curity reasons, more and more networks use private IP ad-
dresses which cannot be used on the Internet. The need
for network address translation arises when hosts in internal
networks want to access or to be accessed on the Internet.
Network address translation relies on the fact that the head-
ers of packets can be adjusted appropriately so that clients
believe they are contacting one IP address, but servers at
different IP addresses believe they are contacted directly by
the clients. This feature can be used to build a virtual server,
i.e. parallel services at the different IP addresses can appear
as a virtual service on a single IP address.

The architecture of virtual server via NAT is illustrated
in Figure 1. The load balancer and real servers are inter-
connected by a switch or a hub. The workflow of VS/NAT
is as follows: When a user accesses a virtual service pro-
vided by the server cluster, a request packet destined for
virtual IP address (the IP address to accept requests for vir-
tual service) arrives at the load balancer. The load balancer

Figure 1. Architecture of a virtual server via
NAT

examines the packet’s destination address and port number,
if they are matched for a virtual service according to the vir-
tual server rule table, a real server is selected from the clus-
ter by a scheduling algorithm, and the connection is added
into the hash table which records connections. Then, the
destination address and the port of the packet are rewritten
to those of the selected server, and the packet is forwarded
to the server. When an incoming packet belongs to an estab-
lished connection, the connection can be found in the hash
table and the packet will be rewritten and forwarded to the
right server. When response packets come back, the load
balancer rewrites the source address and port of the packets
to those of the virtual service. When a connection termi-
nates or timeouts, the connection record will be removed in
the hash table.

3.2. Virtual Server via IP Tunneling

IP tunneling (IP encapsulation) is a technique to encap-
sulate IP datagram within IP datagram, which allows data-
grams destined for one IP address to be wrapped and redi-
rected to another IP address. This technique can be used
to build a virtual server that the load balancer tunnels the
request packets to the different servers, and the servers pro-
cess the requests and return the results to the clients directly,
thus the service can still appear as a virtual service on a sin-
gle IP address.

The architecture of virtual server via IP tunneling is il-
lustrated in Figure 2. The real servers can have any real
IP address in any network, and they can be geographically

3

Figure 2. Architecture of a virtual server via
IP tunneling

distributed, but they must support IP tunneling protocol and
they all have one of their tunnel devices configured with
VIP.

The workflow of VS/TUN is the same as that of VS/NAT.
In VS/TUN, the load balancer encapsulates the packet
within an IP datagram and forwards it to a dynamically se-
lected server. When the server receives the encapsulated
packet, it decapsulates the packet and finds the inside packet
is destined for VIP that is on its tunnel device, so it pro-
cesses the request, and returns the result to the user directly.

3.3. Virtual Server via Direct Routing

This IP load balancing approach is similar to the one
implemented in IBM’s NetDispatcher. The architecture of
VS/DR is illustrated in Figure 3. The load balancer and
the real servers must have one of their interfaces physi-
cally linked by an uninterrupted segment of LAN such as
a HUB/Switch. The virtual IP address is shared by real
servers and the load balancer. All real servers have their
loopback alias interface configured with the virtual IP ad-
dress, and the load balancer has an interface configured with
the virtual IP address to accept incoming packets.

The workflow of VS/DR is the same as that of VS/NAT
or VS/TUN. In VS/DR, the load balancer directly routes a
packet to the selected server, i.e. the load balancer sim-
ply changes the MAC address of data frame to that of the
server and retransmits it on the LAN. When the server re-
ceives the forwarded packet, the server finds that the packet

Figure 3. Architecture of a virtual server via
direct routing

Table 1. the comparison of VS/NAT, VS/TUN
and VS/DR

VS/NAT VS/TUN VS/DR
Server any tunneling non-arp device

server network private LAN/WAN LAN
server number low (10 20) high (100) high (100)
server gateway load balancer own router own router

is for the address on its loopback alias interface and pro-
cesses the request, finally returns the result directly to the
user. Note that real servers’ interfaces that are configured
with virtual IP address should not do ARP response, oth-
erwise there would be a collision if the interface to accept
incoming traffic for VIP and the interfaces of real servers
are in the same network.

3.4. Advantages and Disadvantages

The characteristics of three IP load balancing techniques
are summarized in Table 1.

� Virtual server via NAT

In VS/NAT, real servers can run any operating system
that supports TCP/IP protocol, and only one IP address
is needed for the load balancer and private IP addresses
can be used for real servers.

The disadvantage is that the scalability of VS/NAT is

4

limited. The load balancer may be a bottleneck of the
whole system when the number of server nodes in-
creases up to 20, because both request and response
packets need to be rewritten by the load balancer. Sup-
posing the average length of TCP packets is 536 Bytes
and the average delay of rewriting a packet is around
60us on the Pentium processor (this can be reduced
a little by using of faster processor), the maximum
throughout of the load balancer is 8.93 Mbytes/s. The
load balancer can schedule 15 servers if the average
throughout of real servers is 600KBytes/s.

� Virtual server via IP tunneling

For most Internet services (such as web service) that
request packets are often short and response packets
usually carry large amount of data, a VS/TUN load
balancer may schedule over 100 general real servers
and it won’t be the bottleneck of the system, because
the load balancer just directs requests to the servers
and the servers reply the clients directly. Therefore,
VS/TUN has good scalability. VS/TUN can be used to
build a virtual server that takes huge load, extremely
good to build a virtual proxy server because when the
proxy servers receive requests, they can access the In-
ternet directly to fetch objects and return them to the
clients directly.

However, VS/TUN requires servers support IP Tunnel-
ing protocol. This feature has been tested with servers
running Linux. Since the IP tunneling protocol is be-
coming a standard of all operating systems, VS/TUN
should be applicable to servers running other operating
systems.

� Virtual Server via Direct Routing

Like VS/TUN, a VS/DR load balancer processes only
the client-to-server half of a connection, and the re-
sponse packets can follow separate network routes to
the clients. This can greatly increase the scalability of
virtual server.

Compared to VS/TUN, VS/DR doesn’t have tunneling
overhead , but it requires the server OS has loopback
alias interface that doesn’t do ARP response, the load
balancer and each server must be directly connected
to one another by a single uninterrupted segment of a
local-area network.

3.5. Implemention Issues

We have modified the TCP/IP stack inside Linux kernel
2.0 and 2.2 respectively, in order to support the above three
IP load balancing technologies. The system implementation

of LinuxDirector is illustrated in Figure 4. The “VS Sched-
ule & Control Module” is the main module of LinuxDirec-
tor, it hooks two places at IP packet traversing inside ker-
nel in order to grab/rewrite IP packets to support IP load
balancing. It looks up the “VS Rules” hash table for new
connections, and checks the “Connection Hash Table” for
established connections. The “IPVSADM” user-space pro-
gram is to administrator virtual servers, it uses setsockopt
function to modify the virtual server rules inside the kernel,
and read the virtual server rules through /proc file system.

Figure 4. Implementation of LinuxDirector

The connection hash table is designed to hold millions of
concurrent connections, and each connection entry only oc-
cupies 128 bytes effective memory in the load balancer. For
example, a load balancer of 256 Mbytes free memory can
have two million concurrent connections. The hash table
size can be adapted by users according to their applications,
and the client ���������	��
������������������������������ is used as hash
key so that hash collision is very low. Slow timer is ticked
every second to collect stale connections.

LinuxDirector implements ICMP handling for virtual
services. The incoming ICMP packets for virtual services
will be forwarded to the right real servers, and outgoing
ICMP packets from virtual services will be altered and sent
out correctly. This is important for error and control noti-
fication between clients and servers, such as the MTU dis-
covery.

LinuxDirector implements three IP load balancing tech-
niques. They can be used for different kinds of server clus-
ters, and they can also be used together in a single cluster,
for example, packets are forwarded to some servers through
VS/NAT method, some servers through VS/DR, and some
geographically distributed servers through VS/TUN.

4. Connection Scheduling

We have implemented four scheduling algorithms for
selecting servers from the cluster for new connections:

5

Round-Robin, Weighted Round-Robin, Least-Connection
and Weighted Least-Connection. The first two algorithms
are self-explanatory, because they don’t have any load in-
formation about the servers. The last two algorithms count
active connection number for each server and estimate their
load based on those connection numbers.

4.1. Round-Robin Scheduling

Round-robin scheduling algorithm directs the network
connections to the different servers in the round-robin man-
ner. It treats all real servers as equals regardless of num-
ber of connections or response time. Although the round-
robin DNS works in this way, there are quite different. The
round-robin DNS resolves the single domain to the different
IP addresses, the scheduling granularity is per host, and the
caching of DNS hinder the algorithm take effect, which will
lead to significant dynamic load imbalance among the real
servers. The scheduling granularity of virtual server is per
connection, and it is more superior to the round-robin DNS
due to fine scheduling granularity.

4.2 Weighted Round-Robin Scheduling

The weighted round-robin scheduling can treat the real
servers of different processing capacities. Each server can
be assigned a weight, an integer that indicates its process-
ing capacity, the default weight is 1. The WRR scheduling
works as follows:

Assuming that there is a list of real servers � �� ��� ��� ��	�
� �������� , an index � is the last selected server in
� , the variable
�� is current weight. The variable � is initial-
ized to ��� and
�� is initialized to zero. If all �����������! ,
there are no available servers, all the connection for virtual
server are dropped.

while (1) {
i = (i + 1) mod n;
if (i == 0) {

cw = cw - 1;
if (cw <= 0) {
set cw the maximum weight of S;
if (cw == 0) return NULL;

}
}
if (W(Si) >= cw) return Si;

}

In the WRR scheduling, all servers with higher weights
receives new connections first and get more connections
than servers with lower weights, servers with equal weights
get an eaqual distribution of new connections. For example,
the real servers A,B,C have the weights 4,3,2 respectively,
then the scheduling sequence can be AABABCABC in a

scheduling period (mod sum(Wi)). The WRR is efficient to
schedule request, but it may still lead to dynamic load im-
balance among the real servers if the load of requests vary
highly.

4.3 Least-Connection Scheduling

The least-connection scheduling algorithm directs net-
work connections to the server with the least number of
active connections. This is one of dynamic scheduling al-
gorithms, because it needs to count active connections for
each server dynamically. At a virtual server where there is
a collection of servers with similar performance, the least-
connection scheduling is good to smooth distribution when
the load of requests vary a lot, because all long requests will
not be directed to a single server.

At a first look, the least-connection scheduling can also
perform well even if servers are of various processing ca-
pacities, because the faster server will get more network
connections. In fact, it cannot perform very well because of
the TCP’s TIME WAIT state. The TCP’s TIME WAIT is
usually 2 minutes, in which a busy web site often get thou-
sands of connections. For example, the server A is twice as
powerful as the server B, the server A has processed thou-
sands of requests and kept them in the TCP’s TIME WAIT
state, but but the server B is slow to get its thousands of con-
nections finished and still receives new connections. Thus,
the least-connection scheduling cannot get load well bal-
anced among servers with various processing capacities.

4.4 Weighted Least-Connection Scheduling

The weighted least-connection scheduling is a superset
of the least-connection scheduling, in which a performance
weight can be assigned to each server. The servers with a
higher weight value will receive a larger percentage of ac-
tive connections at any time. The virtual server adminis-
trator can assign a weight to each real server, and network
connections are scheduled to each server in which the per-
centage of the current number of active connections for each
server is a ratio to its weight.

The weighted least-connections scheduling works as fol-
lows: supposing there is n real servers, each server i has
weight � � (i=1,..,n) and active connections " � (i=1,..,n), all
connection number S is the sum of " � (i=1,..,n), the network
connection will be directed to the server j, in which

��"$#&%&�'�(%&�)#*�,+-��. � ��" � %&�/�0%&� � � (i=1,..,n)

Since the S is a constant in this lookup, there is no need
to divide " � by S, it can be optimized as

"$#1%2�3#4�,+-��. � " � %&� � � (i=1,..,n)

6

Since there is no floats in Linux kernel mode, the com-
parison of "/# %&�)# � " � %&� � is changed to "'# � � � �

" � � � # because all weights are larger than zero.

5. High Availability

As more and more mission-critical applications move on
the Internet, providing highly available services becomes
increasingly important. One of the advantages of a clus-
tered system is that it has hardware and software redun-
dancy. High availability can be provided by detecting node
or daemon failures and reconfiguring the system appropri-
ately so that the workload can be taken over by the remain-
ing nodes in the cluster.

Figure 5. High availability in LinuxDirector

The high availability of LinuxDirector is now provided
by using of ”mon” [16], ”heartbeat” [14] and ”fake” [11].
The ”mon” is a general-purpose resource monitoring sys-
tem, which can be used to monitor network service avail-
ability and server nodes. The ”heartbeat” provides heart-
beats (periodical communication) among server nodes. The
”fake” is IP take-over software by using of ARP spoofing
(gratutious ARP). Figure 5 illustrates the high availability
in LinuxDirector.

The server failover is handle as follows: The ”mon” dae-
mon is running on the load balancer to monitor service dae-
mons and server nodes in the cluster. The fping.monitor is
configured to detect whether the server nodes is alive every
t seconds, and the relative service monitor is also config-

ured to detect the service daemons on all the nodes every
m minutes. For example, http.monitor can be used to check
the http services; ftp.monitor is for the ftp services, and so
on. An alert was written to remove/add a rule in the vir-
tual server table while detecting the server node or daemon
is down/up. Therefore, the load balancer can automatically
mask service daemons or servers failure and put them into
service when they are back.

Now, the load balancer becomes a single failure point of
the whole system. In order to prevent the failure of the load
balancer, we need setup a backup of the load balancer. Two
heartbeat daemons run on the primary and the backup, they
heartbeat the message like ”I’m alive” each other through
the serial line periodically. When the heartcode daemon of
the backup cannot hear the ”I’m alive” message from the
primary in the defined time, it will activate the fake to take
over the virtual IP address to provide the load-balancing ser-
vice; when it receives the ”I’m alive” message from the pri-
mary later, it will deactivate the fake to release the virtual
IP address, and the primary will take over the virtual IP ad-
dress. However, the failover or the takeover of the primary
will cause the established connection in the hash table lost
in the current implementation, which will require the clients
to send their requests again.

Coda [1] is a fault-tolerant distributed file systems, a de-
scendant of Andrew file system. The contents of servers can
be stored in Coda, so that files can be highly available and
easy to manage.

6. Connection Affinity

Up to now, we have assumed that each network con-
nection is independent of every other connection, so that
each connection can be assigned to a server independently
of any past, present or future assignments. However, there
are times that two connections from the same client must
be assigned to the same server either for functional or for
performance reasons.

FTP is an example for a functional requirement for con-
nection affinity. The client establishs two connections to
the server, one is a control connection (port 21) to exchange
command information, the other is a data connection (usu-
ally port 20) to transfer bulk data. For active FTP, the client
informs the server the port that it listens to, the data connec-
tion is initiated by the server from the server’s port 20 to the
client’s port. LinuxDirector could examine the packet com-
ing from clients for the port that client listens to, and create
any entry in the hash table for the coming data connection.
But for passive FTP, the server tells the clients the port that
it listens to, the client initiates the data connection to that
port of the server. For the VS/TUN and the VS/DR, Lin-
uxDirector is only on the client-to-server half connection,
so it is imposssible for LinuxDirector to get the port from

7

the packet that goes to the client directly.
SSL (Secure Socket Layer) is an example of a protocol

that has connection affinity between a client and a server
for performance reasons. When a SSL connection is made,
port 443 for secure Web servers and port 465 for secure
mail server, a key for the connection must be chosen and
exchanged. Since it is time-consuming to negociate and
generate the SSL key, the successive connections from the
same client can also be granted by the server in the life span
of the SSL key.

Our current solution to client affinity is to add persis-
tent port handling. When a client first accesses the service
marked persistent, the load balancer will create a connection
template between the given client and the selected server,
then create an entry for the connection in the hash table.
The template expires in a configurable time, and the tem-
plate won’t expire if it has its controlled connections. Be-
fore the template expires, the connections for any port from
the client will send to the right server according to the tem-
plate. Although the persistent port may cause slight load
imbalance among servers because its scheduling granular-
ity is per host, it is a good solution to connection affinity.

7. LinuxDirector Applications

We started the Linux Virtual Server project in May 1998,
the first version of LinuxDirector code was released at that
time. The project has received a lot of public attention, and
LinuxDirector has already been used to build a lot of real-
life Internet sites. Since we don’t have tens of servers and
high-speed network to benchmark the ultra performance of
LinuxDirector, we present a sampling of big sites and com-
panies which currently use the LinuxDirector, in order to
show the high performance and stability of LinuxDirector.
Some big sites and products which we know are based on
LinuxDirector includes:

� UK National JANET Web Cache Server, www-
cache.ja.net, provides web caching service for over
150 universities in the UK. They has used 28-node Lin-
uxDirector cluster to replace their original over 50 in-
dependent cache servers, the speed now is like that of
summer time (most people are on vacation).

� Linux portal, linux.com, has been using many VA
Linux SMP machines to provide this highly loaded
web service using LinuxDirector for a year.

� SourceForge, sourceforge.net, provides web, ftp, mail-
ing list, cvs hosting services for open source projects
all over the world. They use LinuxDirector to balance
traffic over ten their servers.

� One of the largest computer manufacturing companies
in the world deploys two LinuxDirector clusters for
American and European operations of direct sales.

� NetWalk, www.netwalk.com, is using LinuxDirector
for 1024 virtual services in a redundant fail over setting
with many real servers, which includes the US mirror
of our project www.us.linuxvirtualserver.org.

� Red Hat has included the LinuxDirector into Red Hat
Linux Distribtion since version 6.1, is actively devel-
oping a GUI cluster management tool called piranha to
control the LinuxDirector cluster, and provides com-
mercial international support,

� TurboLinux’s “world first software Linux clustering
product” TurboCluster is actually based on LinuxDi-
rector code and ideas, although TurboLinux never ac-
knowledge LinuxDirector in their press release and de-
mostrations.

8. Conclusion and Future Work

LinuxDirector extends the TCP/IP stack of Linux ker-
nel to support three IP load balancing techniques, VS/NAT,
VS/TUN and VS/DR. Four scheduling algorithms have
been developed to meet different application situations.
Scalability is achieved by transparently adding or removing
a node in the cluster. High availability is provided by detect-
ing node or daemon failures and reconfiguring the system
appropriately. The solutions require no modification to ei-
ther the clients or the servers, and they support most of TCP
and UDP services. LinuxDirector is designed for handling
millions of concurrent connections.

Compared to other commercial products, LinuxDirector
provides many unique features:

� forwarding packets to real servers can either be done
using network address translation, fully transparent to
the real servers, or using tunneling or direct routing,
which provides very high performance. Its IP load bal-
ancing technologies is superset of all network load bal-
ancing products in the world.

� supporting multiple scheduling algorithms for dis-
patching connections to the real servers, and further
schedulers can be flexibly added as loadable modules.

� a robust and stable code base, a large user and devel-
oper base and thus the maturity provided by world-
wide peer review.

� proven reliability in the field and real world applica-
tions.

� free to everyone.

8

In the future, we would study and add more load-
balancing algorithms to meet more different require-
ments, such as the load-informed scheduling, content-based
scheduling, and geographic-based scheduling for VS/TUN.
We would like to explore higher degrees of fault-tolerance;
transaction and logging process [10] would be tried to add
in the load balancer so that the load balancer can restart
the request on another server and the client don’t need to
send the request again, and the primary and backup load
balancers exchange their states so that the existing connec-
tion won’t be lost when the backup takes over. We would
also like to explore how to implement virtual server in IPv6.

Acknowledgements

We would like to thank Julian Anastasov for his bug fixes
and smart comments to the LVS code, and Dr. Joseph Mack
for writing the LVS-HOWTO document for the Linux Vir-
tual Server project. Thanks must go to many other contrib-
utors to the Linux Virtual Server project too.

References

[1] The coda project. CMU Coda Team, 1987-now.
http://www.coda.cs.cmu.edu/.

[2] Cisco local director. Cisco Systems, Inc., 1998.
http://www.cisco.com/warp/public/751/lodir/index.html.

[3] E. Anderson, D. Patterson, and E. Brewer. The
magicrouter: an application of fast packet interpos-
ing. http://www.cs.berkeley.edu/ eanders/magicrouter/, May
1996.

[4] D. Andresen, T. Yang, and O. H. Ibarra. Towards
a scalable distributed www server on workstation clus-
ters. In Proc. of 10th IEEE Intl. Symp. Of Paral-
lel Processing (IPPS’96), pages 850–856, Arpil 1996.
http://www.cs.ucsb.edu/Research/rapid sweb/SWEB.html.

[5] T. Brisco. Dns support for load balancing.
http://www.ietf.org/rfc/rfc1794.txt, April 1995. RFC
1794.

[6] A. Dahlin, M. Froberg, J. Walerud, and P. Win-
roth. Eddie: A robust and scalable internet server.
http://www.eddieware.org/, 1998 - now.

[7] O. P. Damani, P. E. Chung, and Y. Huang. One-ip: Tech-
niques for hosting a service on a cluster of machines.
http://www.cs.utexas.edu/users/damani/, August 1997.

[8] D. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scalable
and highly available server. In COMPCON 1996, pages 85–
92, 1996.

[9] G. Goldszmidt and G. Hunt. Netdispatcher: A tcp connec-
tion router. http://www.ics.raleigh.ibm.com/netdispatch/,
May 1997.

[10] J. Gray and T. Reuter. Transaction Processing Concepts and
Techniques. Morgan Kaufmann, 1994.

[11] S. Horman. Creating redundant linux servers. In
The 4th Annual LinuxExpo Conference, May 1998.
http://vergenet.net/linux/fake/.

[12] E. D. Katz, E. D. Katz, and R. McGrath. A scalable http
server: The ncsa prototype. Computer Networks and ISDN
Systems, pages 155–163, May 1994.

[13] T. T. Kwan, R. E. McGrath, and D. A. Reed. Ncsa’s world
wide web server: Design and performance. IEEE Computer,
pages 68–74, November 1995.

[14] A. Robertson and et al. High-availability linux project.
http://www.linux-ha.org/, 1998-now.

[15] R. S.Engelschall. Load balancing your web site:
Practical approaches for distributing http traf-
fic. Web Techniques Magazine, 3(5), May 1998.
http://www.webtechniques.com/.

[16] J. Trocki. mon: Service monitoring daemon.
http://www.kernel.org/software/mon/, 1998-now.

[17] C. Yoshikawa, B. Chun, P. Eastharn, A. Vahdat, T. An-
derson, and D. Culler. Using smart clients to build
scalable services. In USENIX’97 Proceedings, 1997.
http://now.cs.berkeley.edu/.

[18] W. Zhang and et al. Linux virtual server project.
http://www.LinuxVirtualServer.org/, 1998-now.

9

